If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+12y-9=0
a = 3; b = 12; c = -9;
Δ = b2-4ac
Δ = 122-4·3·(-9)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{7}}{2*3}=\frac{-12-6\sqrt{7}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{7}}{2*3}=\frac{-12+6\sqrt{7}}{6} $
| 3x+11-2x=9+2x-5 | | -3y^2+12y-9=0 | | 02x-1=-1 | | -3y^2-12y-9=0 | | 8.8x-3.7=49.1 | | 7x+3=-36-6x | | 78.1+c=124.9 | | 2(x+1)-3=5(2+x)-17 | | 4x+2x+5x=52 | | 2w+40=8(w+2) | | 6x=6(-6x+8)=-192 | | -2x-4-7x=-76 | | t+1814=3 | | 2295=27(p+35) | | -7x+24=-13+90 | | -1b+8=19 | | -6x-4=68-18x | | 6x=6(-6x=8)=-192 | | 2(x2/3)=0 | | 323+21x=2x+399 | | 323+21x=2x*399 | | 2,4y=13.75 | | -3(3+6r)=14-r | | 2295=27(p+35) | | -3x-2(3x-13)=89 | | 323+21x=21x+399 | | 5-10x=-17x+103 | | -88-110x=-121x+121 | | 5(3x-7)=39 | | 12+4/5r=-12 | | -168x+112=-182x+308 | | 2x+50+3x=1000 |